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Learning a rule in a multilayer neural network 

H Schwarze 
CONNECT. The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen 0, Den& 

Received 4 June 1993 

Abstract. The problem of leaming from examples in multilayer nehvorks is studied within 
the framework of statistical mechanics. Using the replica formalism we calculak the average 
generalivtion error of a fully connected committee machine in the Limit Of a large number of 
hidden units. If the number of tnining examples is proportional to the number of inputs in the' 
network, the generalization m r  as a function of the training set size approaches a finite value. 
If the number of training examples is proponional to the number of weights in the network we 
find first-order phase Vansitions with a discontinuous drop in the generalization e m r  for both 
binary and continuous weights. 

1. Introduction 

As nonlinear, parametric models for the solution of classification tasks and function 
approximation, feedforward neural networks have attracted considerable interest (e.g. [ 11). 
Trained from examples of a given task, they are able to generalize, i.e. to compute the 
correct output for new, unknown inputs. Since the seminal work of Gardner [Z] much effort 
has been put into studying the properties of feedforward networks within the framework of 
statistical mechanics (e.g. [3]). Most of this-work has concentrated on the simplest such 
network, the simple perceptron [4] with only one layer of weights connecting the inputs 
with a single output unit. However, most applications of neural networks have to utilize 
architectures with hidden layers for which only a few general theoretical results are known 
(e.g. [5-7]). The computational power of networks with only one additional layer of hidden 
units is already dramatically increased compared with a simple perceptron. In principle, a 
network with one layer of sufficiently many hidden units can implement every Boolean [SI 
or continuous [9,10] function of the inputs. 

As an example of a two-layer network we will study the 'committee machine' [ l l ] .  
This architecture has only one layer of adjustable weights, while the weights connecting the 
hidden units to the output are fixed to f l  so as to implement a majority decision of the 
hidden units. For binary weights this may already be regarded as the most general two-layer 
architecture, because any other combination of hidden-output weights can be gauged to f l  
by flipping the signs of the corresponding input-hidden weights. Previous work has been 
concerned with some restricted versions of this model, such as learning geometrical tasks in 
machines with local connectivity in the input-hidden layer [I21 and learning in committee 
machines with non-overlapping receptive fields [13,14]. In this treelike architecture there 
are no correlations between hidden units and its behaviour was found to be qualitatively 
similar to the simple perceptron. Furthermore, committee machines have been studied within 
the context of storing random input-output pairs [15,16]. 

Recently, learning in fully connected committee machines has been studied within 
the annealed approximation [ 17-19], revealing properties which are qualitatively different 
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from the tree model. However, the annealed approximation (AA) is only valid at high 
temperatures, and a correct description of learning at low temperatures requires solution 
of the quenched theory. The purpose of this paper is to extend previous work towards 
a better understanding of the learning properties of multilayer networks. We present the 
calculation of the average generalization error of a fully connected committee machine in 
the thermodynamic limit (N + ao) employing the replica formalism, and we compare the 
results to the AA. In particular we will study a committee machine in the limit of a large 
number K of hidden units, but with K << N. The target rule is defined by another fully 
connected committee machine and is therefore realizable by the learning network. 

In the following section we start with a definition of the model and briefly outline the 
statistical mechanics approach. In sections 3 and 4 we present the calculation of the average 
generalization error for both binary and continuous weights. The results are summarized in 
section 5. 

2. The model 

We will be concemed with a two-layer network with N inputs, K hidden units and a 
single output unit U .  Each hidden unit ut, 1 E (1,. . . , K), is connected to the inputs 
S = (SI. . . . , SN) through the weight vector Wl and performs the mapping 

i. 

The hidden units may be regarded as outputs of simple perceptrons and will he referred 
to as ‘students’. The overall network output is defined as the majority vote of the student 
committee, given by 

This network is trainedfrom P = orKN input-output examples ([p, 7 ( E P ) ) ,  fi E (1,. . . , P ) ,  
of the desired mapping 7 .  We study a realizable task defined by another committee machine 
with weight vectors x, hidden units r, and an overall output r ( S )  of the form (2). 
The teacher weight vectors are taken to be normalized to v% and mutually orthogonal, 
V; V, = N&. Note that orthogonality does not have to be imposed explicitly, because in 
the thermodynamic limit with N >> K and randomly drawn teacher vectors it will always 
be satisfied. The components of the training inputs Q“ are drawn independently from a 
Gaussian distribution with zero mean and unit variance. However, for large N our results 
are valid for a more general class of distributions, including binary inputs, with the same 
mean and variance. 

The goal of learning is to find a network that performs well on unknown examples, 
which are not included in the training set. The network quality can be measured by the 
generalization error 

t ( (W})  = (@I-d(WL S)r(S)l)s (3) 

the probability that a randomly chosen input is misclassified. However, a training algorithm 
has only access to the limited set of training examples from which one can construct the 
training error Et({Wt}) = ~,Q[ -o ( (Wr l ,  E’)r(5’)1. 
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Following the statistical mechanics approach we will consider a stochastic learning 
algorithm which, for long training times, yields a Cibbs distribution of networks pG([ W,]) = 
z-'po([W~])exp(-BE,([W~))). Here, the formal temperature T = 1/p determines the 
quantity of noise during training and the distribution po([Wl)) includes apriori constraints 
on the weights. The normalization constant Z is the partition function 

Z = 1 dpo ([IV,])~-~'I('W'). (4) 

The average generalization and training errors at thermal equilibrium, averaged over all 
representations of the training examples, are given by 

6s = (( (~(IWID), )) (5) 

and 

€1 = (l/P)(( (Et(lw11))~ )) (6) 

where ((. . .)) denotes a quenched average over the training examples and (. . .)r a thermal 
average. These quantities may be obtained from the average free energy F = -T((ln Z)), 
which can be calculated within the standard replica formalism [2] .  Following this approach, 
we calculate the average replicated partition function ((Z")) in the thermodynamic limit 
(N -+ 00). From the analytical continuation of the result to n --f 0 we obtain 
((In Z)) = limn,o(((Zn)) - l)/n. The average over training examples factorizes into single 
pattern averages and ((Z")) can be written as 

with 01 = P / K N  and 

As will be shown in the appendix, the effective Hamiltonian G!") can be written as a 
function of the order parameters 

R;=-w;.& ~P,"=,wp.w," ( a # b )  c & = - w ; . ~ ; .  (9) 
1 1 1 
N N 

Introducing these parameters through integrals over &functions allows us to rewrite ((Zn)) 
as 



5784 H Schwarze 

where the replica free energy f'") is given by pf'") = uGP) - GC) with the 'entropy' term 

( 1 0  

We can evaluate the integrals over order parameters using the saddle-point method and 
analytically continue the result to n + 0 if we make symmetry assumptions for the order 
parameters. We make a replica-symmetric (Rs) ansatz assuming that the order parameters 
do not depend on the replica indices. Furthermore, we assume partial committee symmetry 
allowing for a specialization of the hidden units on their respective teachers, writing 

Rfk = R + A& D$ = D + q&r c& = C 4- (1 - C)&k (12) 

and similarly for the conjugate parameters i?!k, b$ and e;. This ansatz is similar to that 
used in the capacity calculation for this architecture [15,16]. It has the important properiy 
of describing both a solution with A = q = 0, which is symmetric under permutation of 
hidden units, and a specialized solution with A ,  q # 0 in which this symmetry is broken and 
each hidden unit is correlated with a particular hidden unit in the teacher network. Note that 
no solution corresponding to the permutation-symmetric one was found in the committee 
'machine with non-overlapping receptive fields [13,14], because there the specialization was 
built into the model through the assignment of different inputs to different hidden units. The 
values of A, q ,  R, D ,  C, A, 4,  I?, b and 2. have to be determined at the saddle point of 
the replica free energy and allow the calculation of the average generalization and training 
errors (5) and (6). In the following sections this will be described for committee machines 
with continuous and binary weights. 

3. Continuous weights 

In a committee machine with continuous weights we introduce spherical constraints for the 
individual hidden unit weight vectors po({Wf)) = n,,a S(N-Wf I Wp). These constraints 
are controlled in the standard way by additional parameters E f .  At the saddle point with 
the symmetry properties (12) a straightforward calculation similar to the one performed for 
the simple perceptron [71 and the AA of the present model [181 yields Go = lim,,+o GC)/n .  
After eliminating the auxiliary variables A, 4, k ,  6, 2. and E we obtain 

1 K - l l - A 2 - - C  I K - 1  
In(1 - q - C )  + -- 1 

2 2 K 1 - q - C  2 K 
Go(A. q ,  R, D ,  C )  = - ln(2n) + -- 

1 1 - ( A  + K R ) ~ +  (K - I)C 
1 - q - C - K ( D - C )  + In[l - q  - C - K(D - C)] 

(13) 

The calculation of the energy term G, for large K requires scaling assumptions for the 
order parameters. We introduce new parameters 

p = K R  c = K C  d = K D .  (14) 
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As will be shown below, the values of these parameters at the saddle point can be obtained 
self-consistently, if they are assumed to be of order O(1). This scaling for R and C was 
found to reveal interesting properties of the learning curve within the AA [17-191, and it 
is in good agreement with our Monte Carlo simulations. With the ansatz (14), G, reads to 
leading order in 1 / K  (see appendix A) 

with 

Ref = (2/x)(p + sin-' A) Qe@ = (2/x)(d + sin-' q )  (16) 

and Dx = dx e-x*/2/&, H ( z )  = lzw Dx. The entropy term as a function of the rescaled 
parameters is 

+ - W  - q) - Go=-[l+ln(2x)]+-- In(1 - q )  - In(1 -4 -d+C) 
1 14-A* 1 
2 2 1 - q  2 

(17) 

To leading order in 1/K, this is the same expression as that obtained for a simple perceptron 
P O I .  

The generalization error for a given network (3) can be obtained by a calculation similar 
to the one leading to (15). yielding 1171 

c q-A '  l - A z + c  l - (A+p) '+c  - 
1 - q - d + c  + 

I - q  1 - q  1 - 4  

with Re* as in (16). Inserting the values of the order parameters at the saddle point of the 
free energy pf = aG, - Go finally leads to the average generalization error (5). 

3.1. Small a 

First we consider the limit of small training sets, in which the load parameter is of order 
O(l/K). In this limit, the number of training examples is proportional to the number of 
inputs, and we introduce 6 = aK = P J N .  The saddlepoint equations for the corresponding 
free energy pf = ( 6 / K ) G r  -Go are, to order O(l/K), solved by A = q = 0 and with p ,  
d and c given by the numerical solution of the equations 0 = af/ap = a fpd  = af/ac. 
Hence, the system settles into a committeesymmetric solution without any specialization 
of the hidden units. This solution cannot achieve perfect generalization and for 6 --t CO the 
generalization error approaches a finite value (see figure 1). 

At zero temperature the saddlepoint equations are simplified by the relations p = d 
and c = 0. These relations are similar to those found for the simple perceptron [20,7] and 
reflect a symmetry between the teacher network and typical solutions for the student network 
[3]: at zero temperature, the partition function Z (4) measures the volume in weight space 
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Figure 1. Generalilation (upper curves) and haining 
(lower curves) mor as functions of B = P f N. The full 
curves show the results of the RS calculation, while the 
broken curves correspond to the predictions of the AA. 
Note thaf these results are valid f a  both continuous and 
binary weights The results of Monte carlo simulations 
for the generalization (opm symbols) and tiaining (full 
symbols) v s  are shown for K = 5 (circles) and 
K = 15 (triangles) with T = 0.5 and N = 99. The 
vertical lines indicate the predictions for Zc = K% in 
the IargsK theory of the binary model (31) for K = 5 
and K = 15, respectively. 

Figure 2 Asymptotic generalization and training errors 
for the commitIee-symmeIic solution. 

compatible with the training examples, and a stochastic training procedure corresponds to 
randomly placing weight vectors into this volume. Since the teacher weights are also drawn 
randomly from this volume, the typical overlaps between two solutions, as measured by 
the physical order parameter d,  should be equal to the typical student-teacher overlap as 
measured by p. Furthermore, the internal overlaps between different hidden units within 
each solution vanish as in a randomly chosen teacher. 

The asymptotic behaviour of this solution for 6 + CO (but with 6 <( K) is given by 
1 - p a  1/6 and 

For non-zero temperature the qualitative behaviour remains unchanged, but the asymptotic 
values of p and depend on T .  The asymptotic student-teacher overlap increases with 
increasing temperature, while the asymptotic generalization error decreases and approaches 
6'0 = ( l / n ) c o s - ' ( m )  sz 0.20 for T + w as shown in figure 2. This temperature 
dependence of the residual generalization ability can be compared with an improvement 
in the generalization ability at non-zero temperature in unlearnable problems (e.g. [7]). 
However, the behaviour for 2 + CO should be distinguished from the asymptotic approach 
to the optimal generalization error in the large-ar Limit [7]. The present problem is realizable 
and, accordingly, = 0. However, in the small-a regime, this value cannot be achieved, 
and we do not find cg, et + within this committee-symmetric solution. 
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These results differ eom the predictions of the .U [17,19]. The AA does not give 
any temperature dependence in the residual generalization error. It predicts an approach 
to the value E'O = ( I / n ) c o s - ' ( ~ )  for all temperatures, given by cg - 6 ' 0 , ~  1/&. 
Furthermore, in the AA the rescaled overlaps p and c diverge for & + CO, while they 
remain finite in the RS solution at finite T. 

3.2. Finite a 

If the number of training examples is proportional to the number of adjustable weights in the 
network, we have to find saddle points for the free energy pf = a G r  - Go with a - U(1). 
In this regime the saddle-point equations 0 = af/ap = af/ad can only be solved for 

(21) 

Using these relations, the remaining equations can, to leading order in 1/K, be brought into 
the form 

d = (A +p)' - 4  + U ( I / K )  c = d + q  - 1 + U(l/K). 

m a p  
- = . ( I -  A 
1 - ¶  

aGr 0 = - + 2 ( A + p )  
ap 

Note that equation (24) does not explicitly depend on a. It is easy to see that there is 
always a solution-the symmetric one-with A = q = 0, c = pz - 1, d = pz and p given 
by (24). This solution corresponds to the residual generalization error shown in figure 2. 
Other solutions can be found numerically, and for T = 0 we find the following situation. 
At zero temperature the saddlepoint equations (22)-(24) admit solutions which again show 
symmetry between a typical student and the teacher network, A = q and p = d. Together 
with equation (21), this leaves us with a free energy as a function of A. As shown in figure 3, 
f(A) has a local minimum at A = 0 for all values of a. However, for a > as = 7.17 
a second local minimum appears with A > 0. In the region a, < a < ac = 7.65 this 
minimum has a higher free energy than the symmetric solution at A = 0, but it is the 
global minimum for a > ac. Therefore, the system exhibits a first-order transition from a 
symmehic solution to one with specialized hidden units, accompanied by a discontinuous 
drop in the generalization error. For the specialized solution, the asymptotic behaviour of 
the generalization error can easily be obtained as 

the same result found for the large-K tree committee machine [13]. 
For a > a' = 9.27 the saddle-point equations (22)-(24) have a pair of additional 

solutions which do not satisfy the symmetry A = q. However, these solutions have free 
energies which are always higher than the free energy of the symmetric solution. Therefore, 
in the region (Y > a, we always identify the specialized solution with A = q and p = d as 
the thermodynamic solution. 

At T > 0 the situation remains qualitatively the same, and the complete RS phase 
diagram is shown in figure 4. 
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2.00 
a =7.65 __....e .. .. . . ... . . 

a - 1.80 G 
1.70 __...________.. 

1.50 
0.0 0.2 0.4 0.6 0.8 1.0 5 10 15 20 25 30 

A a = P/KN 

Figure 3. Free energy f (A) for continuous weights 
and different values of a. The freeenergy always has a 
minimum al A = 0, but at rr, = 7.17 a second minimum 
appears at A close io 1. At rrc = 7.65 ihis bccomes the 
global minimum of f. 

Figure 4. RS and annealed phase diagrams for the large- 
K “n i t t ee  machine with continuous weights. The 
two left lines show the RS results for the spinodal line 
(- - -), where the second minimum appears, and the 
location ofthe phase transition (-). These results are 
compared to the predictions of lhe AA for the spinodal 
line (- . -) and lhe phase transition (. . . . . .). 

4. Binary weights 

For binary weights, Wl E {*l)N, the analysis proceeds in a similar way. Now the entropy 
term is given by 

1 
2 Go = In2 - AA - -(1 - q)@ + 

P= - I [ 2 p r \  - d@ + In(1 - q )  - In(1 - q - d + c) + ~ 

2K 1-4 

1-q( I - q  1 - q - d + c  
C - d  q - A 2  -- __- 

where the auxiliary variables A and @ are, to order l /K,  given by 

A = / ~ r  t a n h p  + f i t )  q = S D t  t a n h ’ p  + f i t ) .  (27) 

As for continuous weights the saddlepoint equations in the small-or region with 
G = Kor - O(1) only have a committeesymmetric solution with A = q = 0. Furthermore, 
since the entropy terms in the continuous and binary model for A = q = 0 only differ by a 
constant, both models show the same behaviour of the generalization error for or - 6(1/K).  

Only if the number of training examples is proportional to the number of adjustable 
weights in the network does the discreteness of the weights influence the generalization 
properties. For binary weights, the system can reach its ground state with all student weight 
vectors perfectly aligned with their respective teacher vectors. Accordingly, the free energy 
in the binary model always has a local minimum with A = q = 1 and p = d = c = 0. 
Additional solutions can be obtained from the saddle-point equations of the free energy. As 
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for continuous weights, the equations 0 = af/i?p = af/ad require the relations (21), and 
the remaining equations yield the conditions 

Note that equation (30) is identical to the corresponding equation (24) in the continuous 
model. Once again, for all values of a these equations have a solution A = q = A = 4 = 0 
and p given by (30). For small a this symmetric solution has a lower free energy than the 
perfectly generalizing one with A = q = 1 and f = 0. However, the free energy of the 
symmetric solution becomes positive at a critical value of the load parameter, given by 

where p is given by equation (30) for ,A = q = 0. Hence, the system exhibits a first-order 
phase transition to perfect generalization similar to other learnable models with binary 
weights. Here, the poorly generalizing symmetric solution remains metastable even for 
large a, and a stochastic training algorithm can always get stuck in this solution. The 
phase diagram of the binary model is shown in figure 5. A careful numerical evaluation 
of the saddlepoint equations (28H30) yields an additional solution at large values of a. 
However, as in the continuous model, this solution always has a higher free energy than 
the symmetric one and does not satisfy the symmetry A = q and p = d at T = 0. 

0 6  
€- 

-,< ___... -. 
0.4 ___._.--, ._.. ,, 

l_l. 

0.2 ,... //' 

0.0 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 

a = P/KN 
0 10 20 30 40 50 

5 = P," 

Figure 5. BS and anwled phase di3gruns for the Iqc- 
K c o m m i w  machine with b i n w  weights. The RS 

rcsult for the location of the phase vansition (-) 
a d  its zprwnlrop) line (- - -) are compared uith the 
prediction of ulc M for the p k  m i t i o n  (. . . . . .)and 
its rerwntrop) line (- . -). 

Figure 6. Rescaled smdent-teacher oterlap p = K R  as 
a function of& = PIN for the Rs solution (-) md in 
the AA (- - -)compared with Monte Carlo simulations 
uith K = 5 (0) and K = 15 (A). 'Ihc simulations 
sere performed for N = 99 md T = 0.5. 
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In the binary model, the validity of the replica-symmetric ansatz can be checked by 
evaluating the thermodynamic entropy s = ,!?(act - f). For any given temperature the 
entropy of the symmetric sGte becomes negative at a,,o = ln(2)/(G, - &), where G ,  is 
given by (15)’ind the training error of the symmetric state is 

with p,j = e-p/(l - e-8). A negative entropy is unphysical in a discrete model and, 
correspondingly, the RS ansatz cannot be correct in the region LY > a,,~. In this region, we 
expect the existence of a one-step RS breaking solution with a structure similar to the one 
found for the simple perceptron [7]. 

We have performed Monte Carlo simulations to check our analytical findings for the 
binary model. Figure 1 shows results for T = 0.5 and networks with K = 5 and K = 15, 
hidden units, respectively. The generalization error is in good quantitative agreement with 
the theoretical results for the poorly generalizing solution both within the AA and the RS 
ansatz. However, at this temperature, the simulations stay in the metastable state beyond 
the predicted location of the thermodynamic Uansitions indicated by the vertical lines in 
figure 1.- Furthermore, the RS solution only predicts the training error correctly for small 
values of G. With increasing K the deviation from the theoretical line occurs at higher 
values of Z. This is another indication of the existence of RS breaking for finite a. 

Figure 6 compares the predictions of the AA and the RS theory for the order parameter 
p. Clearly, the divergence of p for G 4 CO found in the AA [17] does not correctly describe 
the results, while there is a good quantitative agreement with the RS solution. 

Even at high temperatures the Monte Carlo dynamics is strongly influenced by the 
presence of the metastable, poorly generalizing state. Only for sufficiently small systems do 
the simulations follow the thermodynamic transition, as shown in figure 7. For larger values 
of N a stochastic process would require increasingly long times to cross the freeenergy 
barrier between two minima. 

w 

0.ooi  . . I 
0 50 100 150 200 

z =  P/N 

5. Summary 

In summary, we have studied the generalization properties of fully connected committee 
machines both analytically and numerically. Within an RS ansatz we have calculated the 

Figure 7. Generaliption enor for the binary committee 
machine as a function of Z = P I N  at 7 = 5. The 
venical lines indicate the predictions ofZ, = KG in the 
large-K theory (31) for K = 5 and 9. The simulations 
were performed for N = 75. K = 5 (0) and N = 25, 
K = 9 (A). 
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average generalization error as a function of the load parameter E .  We have considered 
networks with both continuous and binary weights and with a large number of hidden units 
K. 

In the limit of small training set sizes, E - U ( I / K ) ,  we found a committee-symmetric 
solution where each student weight vector has the same overlap with all the teacher vectors. 
For both binary and continuous weights the generalization error approaches a non-vanishing 
residual value. Only if the number of training examples is sufficiently large, E - U(1). 
can the committee symmetry be broken in favour of a specialization of hidden units. We 
find first-order phase transitions in both the continuous and the binary model. While in 
the binary model the transition is accompanied by a perfect alignment of the hidden unit 
weight vectors with their respective teachers, this is not possible in a continuous model. 
Instead, we found each student vector would closely approach one of the teachers resulting 
in an algebraic decay of the generalization error. In both models the symmetric, poorly 
generalizing state remains metastable for arbitrarily large a. 

A similar effect of a decrease in the generalization ability due to a symmetry in the 
network was also found in a tree parity machine [21]. While the symmetric state in the parity 
machine fails completely to generalize, the committee-symmetr% solution in the present 
model allows for small student-teacher overlaps and a generalization error cg c 112. 

In the binary model a region of negative thermodynamic entropy suggests that RS has 
to be broken to describe the metastable, symmetric solution correctly at large E .  In the 
continuous model, the RS saddle-point equations allow a committee symmetric solution for 
all values of a. However, at zero temperature this solution corresponds to a generalization 
error €0 > 0 (ZO), while the training e ror  vanishes. In particular, we do not find et + 
for a + 00 within this state. This fact suggests the conjecture that this solution loses 
stability at some a* 2 E, and a full broken RS calculation will be necessary for its correct 
description. 

A comparison of the RS solution with the results obtained within the AA [I71 shows that 
the AA gives a qualitatively correct description of the main features of the learning cuwe. 
However, it fails to predict the temperature dependence of the residual generalization error 
and gives an incorrect description of the approach to this value. While the AA predicts a 
divergence of the rescaled order parameters p and c, they approach finite values for every 
finite temperature. Furthermore, the quantitative predictions for the locations of the phase 
transitions differ considerably (see figures 4 .md 5). 

Finally, the analysis described in this paper was restricted to the learning of a realizable 
rule. It would be desirable to discard the symmetry between the target rule and the learning 
network and extend this work to unlearnable problems. 

Acknowledgments 

The author would like to thank M Biehl, J Hertz and S Solla for valuable discussions. 
He wishes to acknowledge the hospitality of the Laboratory of Neuropsychology, NIMH, 
Bethesda MD, USA, where part of this work was carried out. This work was supported by 
the EC under the SCIENCE programme and by the Danish Natural Science Council and 
the Danish Technical Research Council through CONNECT. 

Appendix 

In this appendix we describe the calculation of the energy term G, (15). We start out from 
the general form (8) and introduce the intemal fields U; = N-'''WP .f and U, = N-'P.C;-< 
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through integrals over &functions in the standard way, writing 

The components of the training examples are drawn from a Gaussian distribution with 
zero mean and unit variance. Hence, the average over inputs reduces to a simple Gaussian 
integral and yields 

where we have introduced the order parameters (9) and used the orthogonality and 
normalization of the teacher vectors. To rewrite the Boltzmann factor in (33) we use 
the identities e-8Q(-"b) = @(ub)+e-@@(-ab) and @(-ab) = @(-u)@(b)+@(a)Q(-b) 
and introduce internal representations, writing 

At the RS saddle point (12). the integrals over the $JS  can be done. Furthermore, the integrals 
over 2;s and ups can be simplified, and a straightforward calculation leads us to 

where 

AUI + R xk Uk + e t 1  - i J K R 2  f ZRA - D y  - i m . P  
2; = (37) J1-q-c 
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Here we have used the abbreviations Dx = e-Xzfldx/,& and H ( x )  = JXmDt. To do the 
traces, we introduce integral representations of the @-functions 

and similarly for @(K-’/’  El 51) with the integration variables fi  and y. Now the traces 
can be done, using 

with the definition k ( x )  = 1 - 2 H ( x ) .  For large K we can expand the result, using the 
scaling ansatz (14)  for the order parameters and 

The integrals over the u p  can be factorized if we control the sum K-’” Ex uk: by a new 
variable w, writing 

Now, a straightforward calculation similar to the one in the AA [IS] leads to 

with &fi and Qeff given by (16). Taking the limit n 
G, = lim,,o G y ) / n .  

0 finally yields equation (15) for 
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